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DYNAMICS OF THE MOTION OF A BODY WITH ALLOWANCE FOR
THE UNSTEADY STATE OF THE FLOW ABOUT IT

S.M. Belotserkovskiy, Yu.A. Kochetkov, and V.K. Tomshin,

Moscow
Two methods of solving integrodifferential equations are /35%
examined -- a numerical and an approximate method based on approX-

mating . transient aerodynamic functions with exponential curves.
The latter approach leads to systems of ordinary differential
equations with constant coefficlents. These methods are used 1n
solving three problems in dynamics. Solutions of thevexact
equations are analyzed. These data are compared with the results
obtained for the hypothesis of steady-state condlitions.

Several problems in dynamics involve a detailed study of
transient processes occurring when flight vehicles of different
functions travel in a continuous medium. Thus far they have been
solved even for linearized equatlions by resorting to additional
hypotheses, usually steady-state conditions or harmonic conditions
[1-33. The study of the action of a turbulent medium and high-
frequency oscillations of vehicle pakts and its covering, and
rapid deflections of control surfaces compensating for these ac-
tions and preventing auto-ostillations requires revisilons of
existing approaches. ARAercautoelasticlity 1s concerned with in-
vestigating these processes, with methods of flight vehicle
control, and with suppressing oscillations 1n vehlecle parts by
means of automatic control systems. As a rule, aercautcelasticity
can be based on linear concepts, when dimenslonless kinematic
parameters (angles of attack and slip, deflections of control
surfaces, angular velceities of craft, and deformations) can be
assumed to be small compared with unlty and 1t 1s possible to




adhere only to thelr first
powers, Thls permits exacté
linear equations to be obtained

describing these phenomena and

relating them to nonsteady
processes &6f flow of liquid or
gas past the vehicle [4].

o This article studies the

Flg. 1 linear integrodifferential
equations obtained; ‘here = two
methods of solving are proposed -- a linear and an approximate

method based on approximating transient aerodynamic functions with
exponential curwves. The latter leads to linear systems of
ordinary differential equations.

Three specific problems in dynamics are studied by these
techniques: rotational motion of the vehiecle, its translationsl
oscillations, and the deflection of a control surface acted on by
a given torque of the drive. It is assumed that during the trans-~
ientuprocess the vehicle velecoclity 1s the same. Solutions of
exact equations are analyzed; in particular, they are compared
with results based on the hypothesis of steady-state conditions.

1. Suppose a nonsteady process originates when t = 0. We

| /
TR | ‘ (1.1)

1

introduce the dimensionless time

where ug 1s the mean translational velocity of the body, and b
is the characteristic linear dimension (for wing or control
surface -—- their largest chord).

Let qq(1) stand for the dimensionless kinematic parameters,.
For & solid moving in the plane Oxy (Fig. 1), it follows that

-



according to [3] we take

(1.2)
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: Here o is the angle of attack,

; 1s the angular velocity of the body
8 around the axis Oz and & is the

x4

angle of control surface deflection.

Further, we need the overall

1. . aerodynamic characteristices of the
Y | | body c¢(t) (coefficients of 1ift cy,
' longitudinal moment m,, and hinge

! - moment of control surface mp). We

| : will take area as the characteristic

Fig;'2. ‘ aréa S for the wing or contrcl sur-
face. The normalized conversion

functions of these characteristits cqq (1) when only the kinematic

parameter g4(t) is distinct from zero 1s denoted with chi(T).

These functions correspond to the stepwise variation of the

kinematlec parameter
L I
s e o Frenit<O . _' } :
am={ e (1.3)

For any of these ccefficients ¢(T), the following integral
representations obtaln, which are exact within the frame of
refierence 'of llnear representations [3]L

;(7,)__, ZA[C"‘ (T)—i—cv.q;(_-\_u)] _
. i . :

; (1.4)

. (T)=ch‘(1).{qi(+0)_.'qi (-—U)1+ jq|'(‘["_TI)H¢‘ﬂ(TI)dT| !,L .
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The quantity cqi(T)'can be expressed also in terms of the
weighting function g,41(%) of the aerodynamic coefficient c¢ji

. e S
e, (0= [ ga(r—t)a () dri= f g (@) g (r—)d,

[
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T e —— e —

The weighting function ge21(t) is equal to the characteristic
qu(T) when the kinematic parameter g4(t) 18 a unit impulse, and
allithe remaining kinematic parameters are equalito zero.

Egs. (144) are obtained for the case when g4{t) varies con-
tinuous when T > 0 and has a discontinilty g4(+40) - q1(-0) Wwhen
T = 0. The steady aerodynamic derivative is denoted by c4i. If
we use the hypothesis of steady-state conditions, Insteadoof
Eq. (1.4) wé willl have [3]

cr) = Ec“:q:(ﬂ (1.5)

Flg. 2 presents the gransient functions of the cocefficient of
the longitudinal moment of a parallel wing having aspect ratio
- A = 2.5 for Mach number M = 0.4

y [ " They refer to the origin of co-
-7 e A At S '
. RSN VN FUU N SUUIRUE ordinates 0 colncidlng with the
; 2 N T B SN
? -18f ‘“TT+”ﬁ“7ﬂﬁ“ﬂ”ﬁ i leading edge of the wing. The cor-
, i, : i | responding aerodynamic derivatives
28 o b HE i - lI
z % é & ot are
R - R .
Fig. 3. | e 096 |

= (.63, myr == --0.96 |

The transient functions of the hinge moment of the control
surfaces of reé¢tangular form inplaniview are shown in¥Fig. 3
(M = 1.1) and Fig. 4 (M = 2.0). The aspect ratio of each of the
control surfaces Bymmetrdealldyiarrangedqson thewiwing is A = 2.0,
The axis of their rotation is parallel to Oz and coincldes with



~ the leading edges. At supersonlc
R velocitles the planfdrmoof a thin wing
' only partially influences mp. All

the data presented were obtained on

the assumption that the traliling edge

- ‘_H,_L, - —_— of the wing is linear and coincides
Fig. 4. with the trailing edge of the control
surfaces. The control surfaces are
situated sufficiently far one from the other that there. is no
mutual interaction between them. Thelr exteriocr ends coinclde

with the lateral edges of the wing.

We have the following for the aercdynamic derivatives cor-

respondihg td—the hypothesis of steady-state conditions:
S P [
- |

mt==232 m;mF=-218 \when' M=l i

m,==075 mY=—105 \when', V=20 |

—_— -

A1l the aerodynamic characterlstics were obtained by numeri-
cal calculations based on the methods glven in the monograph [3].

2. According to [#], let us examine in more detaill the
simplest problems in the dynamics of a flight vehicle traveling

In a continuous medium.

Suppose a body moving at constant vedocity ug rotates about
the axis 0z (Fig. 1). If I, 1s the moment of inertia of the body
relative to this axis, Mz 1s the @merodynamic moment, and AMy is
the moment from the spring actlion (for a model in anwind tunnel
or a hydraulic channel), we have

o

V. Ee - 2.1
T AN | ¢ )



In this case

i

0=

and the initial conditions of the problem are

In dimenslonless form, based on Eds.

a0 =a(—0)=a,, @ (+0)=a’(~0)=0

the exact linearized equations for a(t) become

where kp is the

a'-(t)—-ki—j 2" (=) Ha (1) dr—

—

-k @ (=) Ho* (7) drobhee (1) kg2, =0
i 4

psY _ kub?
o 2’: ’ . lzuaz

ky

—

coefficient of spring elasticity.

(2.2)

(2.3)

(1.4), (2.1), and (2.3)

Ge.l)

The approximate form of these equationkusbased on the hypo-

thesls of steady-state conditions (1.4) iz of the form

& () =kym e (1) —kum.oa{1) Hhza (1) =0

2.5)

Suppose a flight vehicleithaving mass m travels at constant

velocity Ug along the axis Ox and executes translation osecilla-
tions along the axis Oy (Fig. 1), then we have

Here Y i1s the 1ift and AY is the force from spring action.

T |
mZY _viay
ar

Let us convert to the dimensionless quantity

(2.6)

"~
(WS
(o]



— T

Lo

We adopt as initial conditions

— 3

n(#0) =n(-0) =n, W'( n(+0) "(“0)"0 , | (2.8)

Then the equation for the function n(t) based on Egs. (1.4),
(2.6) and (2.7) will be

[ (1-)+A. Jq"(r——t:)l!cv“(r,)dr.+kz'11(t)=0

pSH? g = Jeab? e *(2.9)

2in miu,

k‘l :

The approximate equation is obtained by means of (1.5), (2.6)
and (2.7) and is of the form

T}" (T.};—Ah.l’cyﬁn' (T) +kz'ﬂ ('t) ﬂ0 / ( 2 ] lO )

We obtain équations desceribing the motion of a control sur-
face acted on by a given torque of the drive My(t). Let Ip be
the moment of inenrtia of the control surface relative to the
axlis of hinges, and le% Mp be the aerodynamic hinge moment acting
on the control surface (Fig. 1), then we have

H i

&5
Clo— T gy +M,, (2.11)

- . =

We adopt as the initial conditions of control surface motion

B(+0= a(_oy_ 0 E @0 =6 (=0

(2.12)

™~



_ Suppose that during control surface deflection, the vedocity
o:f the origin 0 of the traveling system of coordinates, attack
angle, slip angle and angular vé&ocities of the vehicle remain
unchanged, If they are distinct from zero, the parts of the
hinge moment corresponding to them we include in Mg (£). Thenhase
baséd on Eqs. (1.4), (2.11) and (2.12) the exact equation for
§(t) becomes

—

| :

| —m (1) =0 : , - . . (2.13)
Lo pSH T MW | : - :

. = s m _

1 24, _ * {ous°

By the hypothesis of steady-state cdnditions (1.5), instead
of Eq. (2.13) we have

s 6: (t)—:kmp&-ﬁ- (t)—km ?ba (,T,) _—-m,. {t) =0 /

(2.14)

3. Let us examine the system of integrodifferential equatiocns
of the follewling form

_———‘-"'7"‘7 - - - - - _'_'_'w_'_——J
[ . ' .
\\ q; "_'f.i{QHI---sQa; Chgsve-2Cq h)

J c,= Jé‘j'(tpfl)llcq;(Tl)dTl- =1, 21_' N

! u
| . - . .
I : .

(3.1)

The complexity of the numerical integration of thils system
lies in the fact that the integrand in Eq. (3.1) depends on the
left-hand members of the system. Below we present a numerical
method of integrating the systems, in which iteration of the pro-
cess:¥s carried out at the last step of 1ntegration.

Let AT beuthe step of the numerical integration of =zystem
(3.1). We set



—— e LT
Cq jmgli+g3.‘ '

g:j; jq,-’(rr-_r,)f],"r(t.)d‘n f J (3.2)

&= Jq,-' (r—t)H5 (1) dr, | |

Since the integrand in the right-hand side of the expression
for gpj 1s known, computing g2 poses no difficulties. Calcula-
tion of g1j i1s one integration step of the system (3.1) is carried
outiby the iteration technlque. In the first approximation, we
take the value of QJ'acalculated al the preceding integration step
in 13 then revised by solvingssystem (3.1). The iterative pro-
cess 1s complete if the corrections prove to be smaller than the
assigned magnitude of e.

It turned out that the method has good convergence, since
iterations are carried out over a small time interval At. Usually

the number af iterations i1s not more than three.

The second approximate method of solving systems of integro-
differential equationsidsbbased on an approximation of the transi-
ent functilons chi(T) by lineanacomblnations of the exponential

functions

(3.3)

w1

Ho(t) =eut Z CriePn*

The transfer function of the functional

3 . - ? - cq,;l -
y."—“jq.» (=t} (r)dr g (0 Hetr (o) -

+[ g (+0) —q. (—0) 1 ()

corresponding to this formula can be represented as

~
I
o
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In Egsw%.(3.3) and (3.5), Cy1

and P,i are complex numbers, while

the coefficient ay; and byy of

the transfer function are real
numbers.

In Eq. (3.5) we separate

| fhe constant component

N

_dﬂmq ip;l_l'l_...'{:doi o
an;p”+ [ +al3i

Wi (p) == 1V 0 +

(3.6)

Then the output coordinate
of the system (3.4) will be
determined from the equation

ntep

i

’+.--;‘}'dovq" \'

(m—1

(3.1

in which g4(t) is a kinematic parameter.

Thus, here Instead of the integral relation (3.4) we have ob=-
tained systems of llnear differential equations with constant

coefficients (3.7).

Calculatlons show that a fairly high quality
of approximation is achieved even when n

= 2. Therefiore, each

integral relation in the approximate method usually can be re-

placed by an ordinary second-order linear differential equation

with constant coefficlients.

10
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' 3 ' 4, The numerical
'method of solving integro-

/( ; differential equations
, ,,/“<\' L /4f permitted estimating the
_ / ! accuracy of the approxi-
l Aée : j\\\m=u mate method based on
| '} ul /// 3 approximating transient
L///V _ i : functions. Numerous cal-
PRV

d

K; 7 75 a7 = culatlons showed that the
Fig. 7. - difference between the
gsolutions obtained by

7]

these methods does not exceed the error of approximation.

To investigate the effect of nonsteady-state conditlions of
flow on the motion of the body, all the calculations wereiper-
formed in two variants: based on exact nonsteady equations and
based on equations der¥*ived on the hypothesis of steady-state
conditions. We present the results for the three problems in
dynamics examlned in Sectlon 2.

The angular oscillations of the wing about the axis 0z ex-
tending along the leading edge for the initlal angle of attack
4y = 0.1 were studied. Figs. 5 and & show how the angle of attack
o varies with respect to dimensionless time T = uol/b for a
parallel wing with aspect ratio A = 2.5 for Mach number M = 0.5.
In these cases the springs are absent (kp = 0). Fig. 5 shows the
results for ky = 0.1 (awvery light wing in air or a heavy wing in /42
in water), while the plots in Flg. 6 correspond to kj = 0.0l
{l1ight wing in alr). The number 1 denotes the exact sclutions,
and the number 2 denotes solutions based on the hypothesis of
steady-state conditlons.

Also, angular oscillations of differentwﬁimgs‘at subsonic
and supersconic flizght speeds and for small values of the



ceefficient k1 which correspond to actual
mass characteristics of wings and their

motion in air were analyzed. The initial

&z conditions were taken as everywhere the

same (ang = 0.1); the following variants

were examined,

i::)

21
: / i 1. Delta wing, » = 2.5, k] =
2:1073, kp = 4.10"3, and M = 2.0.

M

2. Delta wing, A = 2.5, k7 =
2-1073, ky = 4°10-3, and m = 1.2.

3. Parallel wing, A = 5.0, k] =
10-3, ko = 10-2, M = 0.4,

It
i

4. Parallelwwing, A = 2.5, ky = 1073, k, = 1072, M = 0.4,

The trend of the funetions a{t) was everywhere close to that
shown 1n Fig. 6: attenuating, almost-periodic oseillations. The
periodsoof the oscillations based on exact theory and the hypo-
thesis of steady-state conditions proved to be virtually identical.
The values of the mean decrements of attenuation of the longltudi-
nal cosclllations are shown in Table 1.

TABLE 1

- Exact gtead
o, of l sqlutidn ptate hy-
]_varianti M=V lpothesis
I =

G6-fu-¢ t.16-10-3
fo8. -3 21-10-3
105 -3 6.0- 104

B5-10-4 A8-10-% .

-l by -
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Translaticnal o;cillations of the wings are characterlzed
by the parameters ng = 0.1, ky' = 10-3, and kg'w-rlO*E, which
correspond to the motlion of the wing in air. The following
variants were studied.

1. Parallelwing, A = 2.5 and M = 0.4,

||
)
=

il

2. Parallel wing, A ®. and M

I

3. Parallel wing, * = 2.5 and M = 0 (Incompressiblesmeédium).

o and M (incompressible medium).

I
o

L, Parallel wing, A

Here it was also establlished that the motiocn is close to
attenuating periodiec ocscillations. Their periods based on the
exact and on approximate calculations was found to be virtually
the same. The values:of theddecrement of the translational oscils .

lations are in Table 2.

TABLE 2
V&r_gﬁi Eﬁ?ctt
‘m‘i..:}, }’l %ﬁes Jag
1 | e | e _ !
2 3.34.10-% | 3.35.10-3 : b
3 LA%00-3 | 151000

. 287102 3.54510-3

In the study. of forced deflectlon of control surfaces, the
transient function of the normalized angle of deflection 6" was
analyzed, where the following was assumed

o { 0 \onr\1<u
m.‘(_ﬂ ==

\ m&*Lfor I>0 ‘ 6"%— -~ (4.1)

-zl ‘ ) My

13
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The calculations were made when /43
K=70 M= 2,0 and M = 1.1; the coefficient k
was varied from 0.1 to 4., Figs. T
) - - - S and 8 show the dependences of the
normalized angle of control surface
] \\4 deflectlion §" on the dimensionless
w 2 time corresonding to a unlt stepwise
| it lawiof variation of my(t)/my* when
-20 . ’ k = 0.1 (Fig. 7) and k = 4.0 (Fig. 8).
Fig. 9 T == Pig.s 9 and 10 contain amplitude-
frequency and phase-frequency charac-
teristics of this system. The Strouhal
¥ o s number Sh = pb/ug was taken as the
ﬂi'"ﬁz:;;;;\\ 77 W dimensionless frequency.
» N\
. In control problems one is in-
e \\3:? terested in how the increment of wing
~14 ’3§5 1ift is delayed with respect to the
_2p w{ﬂp£;4z action of moment mg(t) rotating the
1 ‘wt \Q>\ control surface. To answer this
;-2’ \\ N question, one must use the solution
C =24 — i of §"(1) obtained and the integral re-
FT;E;f:ISTW : presentation of the form (;14) for

:”cyé and cyé".
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